406 research outputs found

    Deciding when to decide : time-variant sequential sampling models explain the emergence of value-based decisions in the human brain

    Get PDF
    The cognitive and neuronal mechanisms of perceptual decision making have been successfully linked to sequential sampling models. These models describe the decision process as a gradual accumulation of sensory evidence over time. The temporal evolution of economic choices, however, remains largely unexplored. We tested whether sequential sampling models help to understand the formation of value-based decisions in terms of behavior and brain responses. We used functional magnetic resonance imaging (fMRI) to measure brain activity while human participants performed a buying task in which they freely decided upon how and when to choose. Behavior was accurately predicted by a time-variant sequential sampling model that uses a decreasing rather than fixed decision threshold to estimate the time point of the decision. Presupplementary motor area, caudate nucleus, and anterior insula activation was associated with the accumulation of evidence over time. Furthermore, at the beginning of the decision process the fMRI signal in these regions accounted for trial-by-trial deviations from behavioral model predictions: relatively high activation preceded relatively early responses. The updating of value information was correlated with signals in the ventromedial prefrontal cortex, left and right orbitofrontal cortex, and ventral striatum but also in the primary motor cortex well before the response itself. Our results support a view of value-based decisions as emerging from sequential sampling of evidence and suggest a close link between the accumulation process and activity in the motor system when people are free to respond at any time

    Neural Evidence for Adaptive Strategy Selection in Value-Based Decision-Making

    Get PDF
    In everyday life, humans often encounter complex environments in which multiple sources of information can influence their decisions. We propose that in such situations, people select and apply different strategies representing different cognitive models of the decision problem. Learning advances by evaluating the success of using a strategy and eventually by switching between strategies. To test our strategy selection model, we investigated how humans solve a dynamic learning task with complex auditory and visual information, and assessed the underlying neural mechanisms with functional magnetic resonance imaging. Using the model, we were able to capture participants' choices and to successfully attribute expected values and reward prediction errors to activations in the dopaminoceptive system (e.g., ventral striatum [VS]) as well as decision conflict to signals in the anterior cingulate cortex. The model outperformed an alternative approach that did not update decision strategies, but the relevance of information itself. Activation of sensory areas depended on whether the selected strategy made use of the respective source of information. Selection of a strategy also determined how value-related information influenced effective connectivity between sensory systems and the VS. Our results suggest that humans can structure their search for and use of relevant information by adaptively selecting between decision strategie

    Functional Dissociation of Ongoing Oscillatory Brain States

    Get PDF
    The state of a neural assembly preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory brain activity of specific frequency range such as alpha (8–12 Hz) and gamma (above 30 Hz) band oscillations are hypothesized to play a functional role in cognitive processing. Therefore, a selective modulation of this prestimulus activity could clarify the functional role of these prestimulus fluctuations. For this purpose, we adopted a novel non-invasive brain-computer-interface (BCI) strategy to selectively increase alpha or gamma band activity in the occipital cortex combined with an adaptive presentation of visual stimuli within specific brain states. During training, oscillatory brain activity was estimated online and fed back to the participants to enable a deliberate modulation of alpha or gamma band oscillations. Results revealed that volunteers selectively increased alpha and gamma frequency oscillations with a high level of specificity regarding frequency range and localization. At testing, alpha or gamma band activity was classified online and at defined levels of activity, visual objects embedded in noise were presented instantly and had to be detected by the volunteer. In experiment I, the effect of two levels of prestimulus gamma band activity on visual processing was examined. During phases of increased gamma band activity significantly more visual objects were detected. In experiment II, the effect was compared against increased levels of alpha band activity. An improvement of visual processing was only observed for enhanced gamma band activity. Both experiments demonstrate the specific functional role of prestimulus gamma band oscillations for perceptual processing. We propose that the BCI method permits the selective modulation of oscillatory activity and the direct assessment of behavioral consequences to test for functional dissociations of different oscillatory brain states

    The relevance of content-related interest and professional development behavior for the professional knowledge of physical education teachers

    Get PDF
    Während in anderen Fächern bereits vielfältige Befunde zu den Zusammenhängen und Wirkungen zwischen dem Professionswissen und weiteren Kompetenzaspekten von Lehrpersonen vorliegen, stehen diese für das Fach Bewegung und Sport noch weitgehend aus. Die vorliegende Studie basiert auf einer Stichprobe von n = 329 (angehenden) Sport-lehrpersonen und zielt darauf ab, ein theoriebasiertes Mediatormodell zu prüfen, das die Beziehungen des inhaltsbezogenen Interesses mit dem Weiterentwicklungsverhalten und dem Professionswissen von Sportlehrpersonen beschreibt. Die Ergebnisse bestätigen das theoretisch angenommene Mediatormodell, wonach der Effekt des inhaltsbezogenen Interesses auf das Professionswissen über das Weiterentwicklungsverhalten vermittelt wird. (DIPF/Orig.)Whereas in other subjects it has already been possible to generate a wide range of findings on the relationships and effects between professional knowledge and other aspects of teacher competence, these are still largely lacking for the subject of physical education. The present study is based on a sample of n = 329 (future) physical education teachers and aims to test a theory-based mediator model describing the relationships of content-related interest with continuing professional development behavior and professional knowledge of physical education teachers. The results confirm the theoretically hypothesized mediator model, according to which the effect of content-related interest on professional knowledge is mediated by continuing professional development behavior. (DIPF/Orig.

    Zur Bedeutung von inhaltsbezogenem Interesse und professionellem Weiterentwicklungsverhalten fĂĽr das Professionswissen von Sportlehrpersonen

    Get PDF
    Während in anderen Fächern bereits vielfältige Befunde zu den Zusammenhängen und Wirkungen zwischen dem Professionswissen und weiteren Kompetenzaspekten von Lehrpersonen vorliegen, stehen diese für das Fach Bewegung und Sport noch weitgehend aus. Die vorliegende Studie basiert auf einer Stichprobe von n = 329 (angehenden) Sportlehrpersonen und zielt darauf ab, ein theoriebasiertes Mediatormodell zu prüfen, das die Beziehungen des inhaltsbezogenen Interesses mit dem Weiterentwicklungsverhalten und dem Professionswissen von Sportlehrpersonen beschreibt. Die Ergebnisse bestätigen das theoretisch angenommene Mediatormodell, wonach der Effekt des inhaltsbezogenen Interesses auf das Professionswissen über das Weiterentwicklungsverhalten vermittelt wird

    The Neural Structures Expressing Perceptual Hysteresis in Visual Letter Recognition

    Get PDF
    AbstractPerception can change nonlinearly with stimulus contrast, and perceptual threshold may depend on the direction of contrast change. Such hysteresis effects in neurometric functions provide a signature of perceptual awareness. We recorded brain activity with functional neuroimaging in observers exposed to gradual contrast changes of initially hidden visual stimuli. Lateral occipital, frontal, and parietal regions all displayed both transient activations and hysteresis that correlated with change and maintenance of a percept, respectively. Medial temporal activity did not follow perception but increased during hysteresis and showed transient deactivations during perceptual transitions. These findings identify a set of brain regions sensitive to visual awareness and suggest that medial temporal structures may provide backward signals that account for neural and, thereby, perceptual hysteresis

    Cortico-spinal imaging to study pain

    Get PDF
    ABSTRACT: Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis

    Dopamine receptor 4 promoter polymorphism modulates memory and neuronal responses to salience

    Get PDF
    Animal models and human functional imaging data implicate the dopamine system in mediating enhanced encoding of novel stimuli into human memory. A separate line of investigation suggests an association between a functional polymorphism in the promoter region for the human dopamine 4 receptor gene (DRD4) and sensitivity to novelty. We demonstrate, in two independent samples, that the -521Cmayor queT DRD4 promoter polymorphism determines the magnitude of human memory enhancement for contextually novel, perceptual oddball stimuli in an allele dose-dependent manner. The genotype-dependent memory enhancement conferred by the C allele is associated with increased neuronal responses during successful encoding of perceptual oddballs in the ventral striatum, an effect which is again allele dose-dependent. Furthermore, with repeated presentations of oddball stimuli, this memory advantage decreases, an effect mirrored by adaptation of activation in the hippocampus and substantia nigra/ventral tegmental area in C carriers only. Thus, a dynamic modulation of human memory enhancement for perceptually salient stimuli is associated with activation of a dopaminergic-hippocampal system, which is critically dependent on a functional polymorphism in the DRD4 promoter region

    Behavioral/Systems/Cognitive Functional Dissociation of Hippocampal Mechanism during Implicit Learning Based on the Domain of Associations

    Get PDF
    Traditionally, the medial temporal lobe (MTL) was linked to explicit or declarative memory in associative learning. However, recent studies have reported MTL involvement even when volunteers are not consciously aware of the learned contingencies. Therefore, the mechanism of the MTL-related learning process cannot be described sufficiently by the explicit/implicit distinction, and the underlying process in the MTL for associative learning needs a more functional characterization. A possible feature that would allow a functional specification also for implicit learning is the nature of the material that is learned. Given that implicit memory tasks often comprise a combination of perceptual and motor learning, we hypothesized that implicit learning of the perceptual but not the motor component entails MTL activation in these studies. To directly test this hypothesis, we designed a purely perceptual and a purely motor variant of the serial reaction time task. In two groups of human volunteers, behavioral results clearly showed that both variants were learned without awareness. Neuronal recordings using fMRI revealed that bilateral hippocampal activation was observed only for implicit learning of the perceptual sequence, not for the motor sequence. This dissociation clearly shows that the functional role of the hippocampus for learning is determined by the domain of the learned association and that the function of the medial temporal lobe system is the processing of contingencies between perceptual features regardless of the explicit or implicit nature of the ensuing memory

    Signal Thresholding Segmentation of Ventricular Volumes in Young Patients with Various Diseases—Can We Trust the Numbers?

    Full text link
    In many cardiac diseases, right and left ventricular volumes in systole and diastole are diagnostically and prognostically relevant. Measurements are made by segmentation of the myocardial borders on cardiac magnetic resonance (CMR) images. Automatic detection of myocardial contours is possible by signal thresholding techniques, but must be validated before use in clinical settings. Biventricular volumes were measured in end-diastole (EDVi) and in end-systole (ESVi) both manually and with the MassK application, with signal thresholds at 30%, 50%, and 70%. Stroke volumes (SV) and cardiac indices (CI) were calculated from volumetric measurements and from flow measured in the ascending aorta and the main pulmonary artery, and both methods were compared. Reproducibility of volumetric measurements was tested in 20 patients. Measurements were acquired in 94 patients aged 15 ± 9 years referred for various conditions. EDVi and ESVi of both ventricles were largest with manual segmentation and inversely proportional to the MassK threshold. Manual and k30 SV and CI corresponded best to flow measurements. Interobserver variability was low for all volumes manually and with MassK. In conclusion, manual and 30% threshold-based biventricular volume segmentation agree best with two-dimensional, phantom-corrected phase contrast flow measurements in a young cardiac referral population and are well reproducible
    • …
    corecore